Concavity properties for solutions to <i>p</i>-Laplace equations with concave nonlinearities

نویسندگان

چکیده

Abstract We obtain new concavity results, up to a suitable transformation, for class of quasi-linear equations in convex domain involving the p -Laplace operator and general nonlinearity satisfying concavity-type assumptions. This provides an extension results previously known literature only torsion first eigenvalue equations. In semilinear case p = 2 {p=2} are already since they include admissible nonlinearities.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR DEGENERATE p(x)-LAPLACE EQUATIONS INVOLVING CONCAVE-CONVEX TYPE NONLINEARITIES WITH TWO PARAMETERS

We show the existence of two nontrivial nonnegative solutions and infinitely many solutions for degenerate p(x)-Laplace equations involving concaveconvex type nonlinearities with two parameters. By investigating the order of concave and convex terms and using a variational method, we determine the existence according to the range of each parameter. Some Caffarelli-Kohn-Nirenberg type problems w...

متن کامل

Fibered nonlinearities for p(x)-Laplace equations

The purpose of this paper is to give some geometric results on the following problem: −div ( α(x)|∇u(X)|p(x)−2∇u(X) ) = f(x, u(X)) in Ω, (1.1) where f = f(x, u) ∈ L∞(Rm×R) is differentiable in u with fu ∈ L∞(R), α ∈ L∞(Rm), with inf Rm α > 0, p ∈ L∞(Rm), with p(x) ≥ 2 for any x ∈ R, and Ω is an open subset of R. Here, u = u(X), with X = (x, y) ∈ R × Rn−m. As well known, the operator in (1.1) co...

متن کامل

NONEXISTENCE OF STABLE SOLUTIONS TO p-LAPLACE EQUATIONS WITH EXPONENTIAL NONLINEARITIES

In this note we prove the nonexistence of stable solutions to the p-Laplace equation −∆pu = eu on the entire Euclidean space RN , where p > 2 and N < p(p+3) p−1 .

متن کامل

Multiple Positive Solutions for Singular Elliptic Equations with Concave-Convex Nonlinearities and Sign-Changing Weights

Recommended by Pavel Drabek We study existence and multiplicity of positive solutions for the following Dirichlet equations: −Δu − μ/|x| 2 u λfx|u| q−2 u gx|u| 2 * −2 u in Ω, u 0 on ∂Ω, where 0 ∈ Ω ⊂ R N N ≥ 3 is a bounded domain with smooth boundary ∂Ω, λ > 0, 0 ≤ μ < μ N − 2 2 /4, 2 * 2N/N − 2, 1 ≤ q < 2, and f, g are continuous functions on Ω which are somewhere positive but which may change...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Calculus of Variations

سال: 2022

ISSN: ['1864-8258', '1864-8266']

DOI: https://doi.org/10.1515/acv-2021-0100